Skip to contents

Introduction

The mcgf package contains useful functions to simulate Markov chain Gaussian fields (MCGF) and regime-switching Markov chain Gaussian fields (RS-MCGF) with covariance structures of the Gneiting class (Gneiting 2002). It also provides useful tools to estimate the parameters by weighted least squares (WLS) and maximum likelihood estimation (MLE). The mcgf_rs function can used be to fit covariance models and obtain Kriging forecasts. A typical workflow for fitting a regime-switching mcgf is given below.

  1. Create an mcgf_rs object by providing a dataset and the corresponding locations/distances
  2. Calculate auto- and cross-correlations.
  3. Fit the base covariance model which is a fully symmetric model.
  4. Fit the Lagrangian model to account for asymmetry, if necessary.
  5. Obtain Kriging forecasts.
  6. Obtain Kriging forecasts for new locations given their coordinates.

We will demonstrate the use of mcgf_rs by an example below.

Simulated Example

Here we will generate a regime-switching MCGF process of size 5,000 with the general stationary covariance structure. More specifically, we suppose there are two regimes each with different prevailing winds but the same fully symmetric model. We will begin with simulating the regime process first.

Regime process

We start with simulating a transition matrix for a two-stage Markov chain with high probabilities of staying in the current regime. The simulated transition matrix and regime process is given below.

library(mcgf)
K <- 2
N <- 5000
lag <- 5

set.seed(123)
tran_mat <- matrix(rnorm(K^2, mean = 0.06 / (K - 1), sd = 0.01), nrow = K)
diag(tran_mat) <- rnorm(K, mean = 0.94, sd = 0.1)
tran_mat <- sweep(abs(tran_mat), 1, rowSums(tran_mat), `/`)
tran_mat
#>            [,1]       [,2]
#> [1,] 0.92650859 0.07349141
#> [2,] 0.04934827 0.95065173

regime <- rep(NA, N)
regime[1] <- 1

for (n in 2:(N)) {
    regime[n] <- sample(1:K, 1, prob = tran_mat[regime[n - 1], ])
}
table(regime)
#> regime
#>    1    2 
#> 1993 3007

Data Simulation

Locations

We generate the coordinates of 25 locations below and treat the last 5 locations as unobserved locations.

set.seed(123)
x <- stats::rnorm(25, -110)
y <- stats::rnorm(25, 50)
locations_all <- cbind(lon = x, lat = y)
locations <- locations_all[1:20, ]
locations_new <- locations_all[-c(1:20), ]
locations_all
#>             lon      lat
#>  [1,] -110.5605 48.31331
#>  [2,] -110.2302 50.83779
#>  [3,] -108.4413 50.15337
#>  [4,] -109.9295 48.86186
#>  [5,] -109.8707 51.25381
#>  [6,] -108.2849 50.42646
#>  [7,] -109.5391 49.70493
#>  [8,] -111.2651 50.89513
#>  [9,] -110.6869 50.87813
#> [10,] -110.4457 50.82158
#> [11,] -108.7759 50.68864
#> [12,] -109.6402 50.55392
#> [13,] -109.5992 49.93809
#> [14,] -109.8893 49.69404
#> [15,] -110.5558 49.61953
#> [16,] -108.2131 49.30529
#> [17,] -109.5021 49.79208
#> [18,] -111.9666 48.73460
#> [19,] -109.2986 52.16896
#> [20,] -110.4728 51.20796
#> [21,] -111.0678 48.87689
#> [22,] -110.2180 49.59712
#> [23,] -111.0260 49.53334
#> [24,] -110.7289 50.77997
#> [25,] -110.6250 49.91663

Data simulation

To simulate the 5-th order RS-MCGF process, we calculate the distance matrices for all locations first and then use mcgf_rs_sim to simulate such process.

# simulate RS MCGF
par_base <- list(
    par_s = list(nugget = 0, c = 0.005, gamma = 0.5),
    par_t = list(a = 0.5, alpha = 0.2)
)
par_lagr1 <- list(v1 = 100, v2 = 100, k = 2)
par_lagr2 <- list(v1 = 50, v2 = 100, k = 2)

h <- find_dists_new(locations, locations_new)

set.seed(123)
data_all <- mcgf_rs_sim(
    N = N, label = regime,
    base_ls = list("sep"),
    lagrangian_ls = list("lagr_tri"),
    par_base_ls = list(par_base),
    par_lagr_ls = list(par_lagr1, par_lagr2),
    lambda_ls = list(0.3, 0.3),
    lag_ls = list(lag, lag),
    dists_ls = list(h, h)
)
data_all <- data_all[-c(1:(lag + 1)), ]
rownames(data_all) <- 1:nrow(data_all)
head(data_all)
#>   regime          1           2          3           4           5          6
#> 1      1 -0.4131534 -0.21405685  0.7229975 -0.08322733  0.07023563  1.1604699
#> 2      1 -1.7574429 -0.06411826  0.3964733 -1.75421279  0.80900801  0.9012895
#> 3      1 -0.8264216 -1.02490415 -0.4809606 -0.52653010 -0.49018553  0.4388830
#> 4      1  0.4089212 -0.72910670 -1.6972114 -0.01897436 -1.38506809 -1.1222586
#> 5      1 -0.4281591  0.03573133 -0.4868917 -0.58029926 -0.71498960 -0.5022470
#> 6      1 -0.9151832 -0.15757508  0.1973134 -1.31430392  0.24629283  0.9822986
#>            7          8           9           10         11         12
#> 1  0.3711177 -0.7330453 -0.63540128 -0.505026336  1.1774047  0.4296625
#> 2 -0.8354430 -0.2938705  0.03111661  0.085975510  1.1477487  0.4023173
#> 3 -1.6674136 -1.0990787 -1.00007998 -0.947069513  0.3588851 -0.8873257
#> 4 -0.9068406 -0.8932880 -0.58649863 -0.683863298 -0.9053647 -0.4603737
#> 5 -0.6486205 -0.9952912 -0.44048783 -0.006790727 -0.5014230  0.1964397
#> 6 -0.5239507 -0.6489432 -0.53016266 -0.683924188  1.2357249 -0.2040576
#>           13         14         15         16         17          18         19
#> 1  0.4330098  0.2688759 -0.2456852  1.1310980  0.5107434 -1.49171524  0.5461195
#> 2 -0.4543559 -0.9603846 -1.4064577 -0.4327531 -0.6527845 -2.36113493  2.0883711
#> 3 -1.4776433 -1.7967629 -1.9298573 -0.7471992 -1.4625251 -1.10579922  1.4295638
#> 4 -0.6764329 -0.9565217 -0.3102249 -0.1738450 -0.6722008 -0.01761965 -0.3733054
#> 5 -0.8742965 -0.6689574 -0.3878315  0.1411472 -0.6709104 -1.22389933 -0.7333397
#> 6 -0.4211337 -0.1178140 -1.2466737  0.1826659 -0.4473040 -2.16117290 -0.1881705
#>            20      New_1       New_2      New_3       New_4      New_5
#> 1 -0.44740467 -1.1643327 -0.06426498 -1.0297345 -0.77352947 -0.5462547
#> 2  0.79348781 -2.5153602 -1.36237046 -2.0750023 -0.01391596 -1.2526368
#> 3  0.01670341 -1.5287918 -2.41782779 -1.2808399 -1.23474600 -2.2184071
#> 4 -0.31026289 -0.3648568 -0.20992439  0.1999604 -0.81191510 -0.8132315
#> 5 -0.38518119 -0.9982079 -0.59390388 -0.8748418 -0.61917135 -0.1031998
#> 6 -0.48971901 -1.9617002 -1.33014481 -1.4159325 -0.20824058 -1.3501761

We will holdout the new locations for parameter estimation.

data_old <- data_all[, 1:21]
data_new <- data_all[, -c(1:21)]

Fitting Covariance Models

We will first fit pure spatial and temporal models, then the fully symmetric model, and finally the general stationary model. First, we will create an mcgf_rs object and calculate auto- and cross- correlations.

data_mcgf <- mcgf_rs(data_old[, -1],
    locations = locations, longlat = TRUE,
    label = data_old[, 1]
)
#> `time` is not provided, assuming rows are equally spaced temporally.
data_mcgf <- add_acfs(data_mcgf, lag_max = lag)
data_mcgf <- add_ccfs(data_mcgf, lag_max = lag)

# If multiple cores are available
# data_mcgf <- add_ccfs(data_mcgf, lag_max = lag, ncores = 8)

Here acfs actually refers to the mean auto-correlations across the stations for each time lag. To view the calculated acfs, we can run:

acfs(data_mcgf)
#> $acfs
#>      lag0      lag1      lag2      lag3      lag4      lag5 
#> 1.0000000 0.6075506 0.4076272 0.3805953 0.3702800 0.3586723 
#> 
#> $acfs_rs
#> $acfs_rs$`Regime 1`
#>      lag0      lag1      lag2      lag3      lag4      lag5 
#> 1.0000000 0.5953378 0.3991894 0.3814418 0.3714696 0.3639292 
#> 
#> $acfs_rs$`Regime 2`
#>      lag0      lag1      lag2      lag3      lag4      lag5 
#> 1.0000000 0.6149751 0.4125410 0.3797082 0.3691936 0.3550066

Similarly, we can view the ccfs by the ccfs function. Here we will present lag 1 regime-switching ccfs for the first 6 locations for the two regimes.

# Regime 1
ccfs(data_mcgf)$ccfs_rs$`Regime 1`[1:6, 1:6, 2]
#>           1         2          3         4         5          6
#> 1 0.6047946 0.1236369 0.05451172 0.3713023 0.1363766 0.07120106
#> 2 0.3027375 0.6174314 0.25427725 0.4220703 0.4477891 0.23134358
#> 3 0.2293202 0.3347340 0.58222643 0.3837498 0.2952973 0.46537082
#> 4 0.5256692 0.1564803 0.12938351 0.6003370 0.1701296 0.11145141
#> 5 0.2602507 0.5444454 0.32282783 0.3751226 0.6132754 0.30494395
#> 6 0.1959693 0.3710529 0.53421219 0.3193299 0.3348082 0.56379838

# Regime 2
ccfs(data_mcgf)$ccfs_rs$`Regime 2`[1:6, 1:6, 2]
#>           1         2         3         4         5         6
#> 1 0.6172964 0.1575309 0.1723283 0.3893590 0.1096808 0.1688383
#> 2 0.2620954 0.6289374 0.3280881 0.3878912 0.4234188 0.3004865
#> 3 0.2811509 0.3158273 0.6163612 0.4355238 0.2379046 0.4932367
#> 4 0.5759686 0.1825519 0.2120796 0.6293679 0.1514506 0.1733759
#> 5 0.1509059 0.5799483 0.4202242 0.2930347 0.6249524 0.4089683
#> 6 0.2351466 0.3713949 0.5875119 0.3502719 0.3122138 0.6069874

Pure Spatial Model

The pure spatial model can be fitted using the fit_base function. The results are actually obtained from the optimization function nlminb. Since the base model is the same for the two regimes, we set rs = FALSE to indicate this.

fit_spatial <- fit_base(
    data_mcgf,
    model_ls = "spatial",
    lag_ls = lag,
    par_init_ls = list(c(c = 0.000001, gamma = 0.5)),
    par_fixed_ls = list(c(nugget = 0)),
    rs = FALSE
)
fit_spatial[[1]]$fit
#> $par
#>          c      gamma 
#> 0.00390725 0.50000000 
#> 
#> $objective
#> [1] 13.20815
#> 
#> $convergence
#> [1] 0
#> 
#> $iterations
#> [1] 2
#> 
#> $evaluations
#> function gradient 
#>       11        7 
#> 
#> $message
#> [1] "both X-convergence and relative convergence (5)"

Pure Temporal Model

The pure temporal can also be fitted by fit_base:

fit_temporal <- fit_base(
    data_mcgf,
    model = "temporal",
    lag_ls = lag,
    par_init_ls = list(c(a = 1, alpha = 0.5)),
    rs = FALSE
)
fit_temporal[[1]]$fit
#> $par
#>         a     alpha 
#> 0.7137588 0.3484975 
#> 
#> $objective
#> [1] 0.0202941
#> 
#> $convergence
#> [1] 0
#> 
#> $iterations
#> [1] 9
#> 
#> $evaluations
#> function gradient 
#>       11       26 
#> 
#> $message
#> [1] "relative convergence (4)"

We can store the fitted spatial and temporal models to data_mcgf using add_base:

data_mcgf <- add_base(data_mcgf,
    fit_s = fit_spatial,
    fit_t = fit_temporal,
    sep = T
)

Separable Model

We can also calculate the WLS estimates all at once by fitting the separable model:

fit_sep <- fit_base(
    data_mcgf,
    model_ls = "sep",
    lag_ls = lag,
    par_init_ls = list(c(c = 0.000001, gamma = 0.5, a = 1, alpha = 0.5)),
    par_fixed_ls = list(c(nugget = 0)),
    control = list(list(iter.max = 10000, eval.max = 10000)),
    rs = FALSE
)
fit_sep[[1]]$fit
#> $par
#>          c      gamma          a      alpha 
#> 0.00390725 0.50000000 0.72365072 0.39736171 
#> 
#> $objective
#> [1] 29.16779
#> 
#> $convergence
#> [1] 0
#> 
#> $iterations
#> [1] 11
#> 
#> $evaluations
#> function gradient 
#>       27       64 
#> 
#> $message
#> [1] "relative convergence (4)"

store the fully symmetric model as the base model and print the base model:

data_mcgf <- add_base(data_mcgf, fit_base = fit_sep, old = TRUE)
model(data_mcgf, model = "base", old = TRUE)
#> ----------------------------------------
#>                  Model
#> ----------------------------------------
#> - Time lag: 5 
#> - Scale of time lag: 1 
#> - Forecast horizon: 1 
#> ----------------------------------------
#>             Old - not in use
#> ----------------------------------------
#> - Regime switching: FALSE
#> - Base model: sep 
#> - Parameters:
#>          c      gamma     nugget          a      alpha 
#> 0.00390725 0.50000000 0.00000000 0.71375884 0.34849745 
#> 
#> - Fixed parameters:
#> nugget 
#>      0 
#> 
#> - Parameter estimation method: wls wls 
#> 
#> - Optimization function: nlminb nlminb 
#> ----------------------------------------
#>                  Base
#> ----------------------------------------
#> - Regime switching: FALSE
#> - Base model: sep 
#> - Parameters:
#>          c      gamma          a      alpha     nugget 
#> 0.00390725 0.50000000 0.72365072 0.39736171 0.00000000 
#> 
#> - Fixed parameters:
#> nugget 
#>      0 
#> 
#> - Parameter estimation method: wls 
#> 
#> - Optimization function: nlminb

The old = TRUE in add_base keeps the fitted pure spatial and temporal models for records, and they are not used for any further steps. It is recommended to keep the old model not only for reproducibility, but to keep a history of fitted models.

Lagrangian Model

We will fit Lagrangian correlation functions to model the regime-dependent prevailing winds:

fit_lagr_rs <- fit_lagr(data_mcgf,
    model_ls = list("lagr_tri"),
    par_init_ls = list(list(lambda = 0.1, v1 = 100, v2 = 100, k = 2))
)
lapply(fit_lagr_rs[1:2], function(x) x$fit)
#> $`Regime 1`
#> $`Regime 1`$par
#>     lambda         v1         v2          k 
#>  0.1703142 74.4859663 65.8446145  1.3401565 
#> 
#> $`Regime 1`$objective
#> [1] 12.76542
#> 
#> $`Regime 1`$convergence
#> [1] 0
#> 
#> $`Regime 1`$iterations
#> [1] 31
#> 
#> $`Regime 1`$evaluations
#> function gradient 
#>       38      147 
#> 
#> $`Regime 1`$message
#> [1] "relative convergence (4)"
#> 
#> 
#> $`Regime 2`
#> $`Regime 2`$par
#>     lambda         v1         v2          k 
#>  0.2167212 43.9009790 78.2938279  1.7852123 
#> 
#> $`Regime 2`$objective
#> [1] 15.68579
#> 
#> $`Regime 2`$convergence
#> [1] 0
#> 
#> $`Regime 2`$iterations
#> [1] 27
#> 
#> $`Regime 2`$evaluations
#> function gradient 
#>       35      128 
#> 
#> $`Regime 2`$message
#> [1] "relative convergence (4)"

Finally we will store this model to data_mcgf using add_lagr and then print the final model:

data_mcgf <- add_lagr(data_mcgf, fit_lagr = fit_lagr_rs)
model(data_mcgf, old = TRUE)
#> ----------------------------------------
#>                  Model
#> ----------------------------------------
#> - Time lag: 5, 5 
#> - Scale of time lag: 1 
#> - Forecast horizon: 1 
#> ----------------------------------------
#>             Old - not in use
#> ----------------------------------------
#> - Regime switching: FALSE
#> - Base model: sep 
#> - Parameters:
#>          c      gamma     nugget          a      alpha 
#> 0.00390725 0.50000000 0.00000000 0.71375884 0.34849745 
#> 
#> - Fixed parameters:
#> nugget 
#>      0 
#> 
#> - Parameter estimation method: wls wls 
#> 
#> - Optimization function: nlminb nlminb 
#> ----------------------------------------
#>                  Base
#> ----------------------------------------
#> - Regime switching: FALSE
#> - Base model: sep 
#> - Parameters:
#>          c      gamma          a      alpha     nugget 
#> 0.00390725 0.50000000 0.72365072 0.39736171 0.00000000 
#> 
#> - Fixed parameters:
#> nugget 
#>      0 
#> 
#> - Parameter estimation method: wls 
#> 
#> - Optimization function: nlminb 
#> ----------------------------------------
#>               Lagrangian
#> ----------------------------------------
#> - Regime switching: TRUE 
#> --------------------
#>       Regime 1 
#> --------------------
#> - Lagrangian model: lagr_tri 
#> - Parameters:
#>     lambda         v1         v2          k 
#>  0.1703142 74.4859663 65.8446145  1.3401565 
#> 
#> - Fixed parameters:
#> NULL
#> 
#> - Parameter estimation method: wls 
#> 
#> - Optimization function: nlminb 
#> --------------------
#>       Regime 2 
#> --------------------
#> - Lagrangian model: lagr_tri 
#> - Parameters:
#>     lambda         v1         v2          k 
#>  0.2167212 43.9009790 78.2938279  1.7852123 
#> 
#> - Fixed parameters:
#> NULL
#> 
#> - Parameter estimation method: wls 
#> 
#> - Optimization function: nlminb

Simple Kriging for new locations

We provide functionalists for computing simple Kriging forecasts for new locations. The associated function is krige_new, and users can either supply the coordinates for the new locations or the distance matrices for all locations.

krige_base_new <- krige_new(
    x = data_mcgf,
    locations_new = locations_new,
    model = "base",
    interval = TRUE
)
krige_stat_new <- krige_new(
    x = data_mcgf,
    locations_new = locations_new,
    model = "all",
    interval = TRUE
)

Next, we can compute the root mean square error (RMSE), mean absolute error (MAE), and the realized percentage of observations falling outside the 95% PI (POPI) for these models for the new locations.

RMSE

# RMSE
rmse_base <-
    sqrt(colMeans((data_new - krige_base_new$fit[, -c(1:20)])^2, na.rm = T))
rmse_stat <-
    sqrt(colMeans((data_new - krige_stat_new$fit[, -c(1:20)])^2, na.rm = T))
rmse <- c(
    "Base" = mean(rmse_base),
    "STAT" = mean(rmse_stat)
)
rmse
#>      Base      STAT 
#> 0.8117693 0.7621844

MAE

mae_base <- colMeans(abs(data_new - krige_base_new$fit[, -c(1:20)]), na.rm = T)
mae_stat <- colMeans(abs(data_new - krige_stat_new$fit[, -c(1:20)]), na.rm = T)
mae <- c(
    "Base" = mean(mae_base),
    "STAT" = mean(mae_stat)
)
mae
#>      Base      STAT 
#> 0.6451738 0.6060982

POPI

# POPI
popi_base <- colMeans(
    data_new < krige_base_new$lower[, -c(1:20)] | data_new > krige_base_new$upper[, -c(1:20)],
    na.rm = T
)
popi_stat <- colMeans(
    data_new < krige_stat_new$lower[, -c(1:20)] | data_new > krige_stat_new$upper[, -c(1:20)],
    na.rm = T
)
popi <- c(
    "Base" = mean(popi_base),
    "STAT" = mean(popi_stat)
)
popi
#>       Base       STAT 
#> 0.04560561 0.03811812

References

Gneiting, Tilmann. 2002. “Nonseparable, Stationary Covariance Functions for Space–Time Data.” Journal of the American Statistical Association 97 (458): 590–600. https://doi.org/10.1198/016214502760047113.