Obtain kriging forecasts for an mcgf object.
Arguments
- x
An
mcgfobject.- newdata
A data.frame with the same column names as
x. Ifnewdatais missing the forecasts at the original data points are returned.- model
Which model to use. One of
all,base, orempirical.- interval
Logical; if TRUE, prediction intervals are computed.
- level
A numeric scalar between 0 and 1 giving the confidence level for the intervals (if any) to be calculated. Used when
interval = TRUE- ...
Additional arguments. Give
lagandhorizonif they are not defined inxfor theempiricalmodel.
Details
It produces simple kriging forecasts for a zero-mean mcgf. It supports
kriging for the empirical model, the base model, and the all model
which is the general stationary model with the base and Lagrangian model
from x.
When interval = TRUE, confidence interval for each forecasts and each
horizon is given. Note that it does not compute confidence regions.
See also
Other functions on fitting an mcgf:
add_base.mcgf(),
add_lagr.mcgf(),
fit_base.mcgf(),
fit_lagr.mcgf(),
krige_new.mcgf()
Examples
data(sim1)
sim1_mcgf <- mcgf(sim1$data, dists = sim1$dists)
#> `time` is not provided, assuming rows are equally spaced temporally.
sim1_mcgf <- add_acfs(sim1_mcgf, lag_max = 5)
sim1_mcgf <- add_ccfs(sim1_mcgf, lag_max = 5)
# Fit a separable model and store it to 'sim1_mcgf'
fit_sep <- fit_base(
sim1_mcgf,
model = "sep",
lag = 5,
par_init = c(
c = 0.001,
gamma = 0.5,
a = 0.3,
alpha = 0.5
),
par_fixed = c(nugget = 0)
)
sim1_mcgf <- add_base(sim1_mcgf, fit_base = fit_sep)
# Fit a Lagrangian model
fit_lagr <- fit_lagr(
sim1_mcgf,
model = "lagr_tri",
par_init = c(v1 = 300, v2 = 300, lambda = 0.15),
par_fixed = c(k = 2)
)
# Store the fitted Lagrangian model to 'sim1_mcgf'
sim1_mcgf <- add_lagr(sim1_mcgf, fit_lagr = fit_lagr)
# Calculate the simple kriging predictions and intervals
sim1_krige <- krige(sim1_mcgf, interval = TRUE)
# Calculate RMSE for each location
rmse <- sqrt(colMeans((sim1_mcgf - sim1_krige$fit)^2, na.rm = TRUE))
rmse
#> 1 2 3 4 5 6 7 8
#> 0.7303482 0.7327718 0.7356240 0.7345241 0.7334888 0.7359809 0.7336117 0.7330753
#> 9 10
#> 0.7363262 0.7446223
# Calculate MAE for each location
mae <- colMeans(abs(sim1_mcgf - sim1_krige$fit), na.rm = TRUE)
mae
#> 1 2 3 4 5 6 7 8
#> 0.5835321 0.5836252 0.5845320 0.5853083 0.5798051 0.5922677 0.5855238 0.5824134
#> 9 10
#> 0.5843573 0.5825537
# Calculate POPI for each location
popi <- colMeans(
sim1_mcgf < sim1_krige$lower | sim1_mcgf > sim1_krige$upper,
na.rm = TRUE
)
popi
#> 1 2 3 4 5 6 7
#> 0.04623116 0.04120603 0.05025126 0.04623116 0.05226131 0.04020101 0.04924623
#> 8 9 10
#> 0.04321608 0.04020101 0.04422111