Simulate Markov chain Gaussian field
Arguments
- N
Sample size.
- base
Base model,
sep
orfs
for now.- lagrangian
Lagrangian model, "none" or
lagr_tri
for now.- par_base
Parameters for the base model (symmetric).
- par_lagr
Parameters for the Lagrangian model.
- lambda
Weight of the Lagrangian term, \(\lambda\in[0, 1]\).
- dists
Distance matrices or arrays.
- sd
Standard deviation for each location.
- lag
Time lag.
- scale_time
Scale of time unit, default is 1.
lag
is divided byscale_time
.- horizon
Forecast horizon, default is 1.
- init
Initial samples, default is 0.
- mu_c, mu_p
Means of current and past.
- return_all
Logical; if TRUE the joint covariance matrix, arrays of distances and time lag are returned.
Value
Simulated Markov chain Gaussian field with user-specified covariance
structure. The simulation is done by kriging. The output data is in
space-wide format. dists
must contain h
for symmetric models, and h1
and h2
for general stationary models. horizon
controls forecasting
horizon. sd
, mu_c
, mu_p
, and init
must be vectors of appropriate
sizes.
See also
Other simulations of Markov chain Gaussian fields:
mcgf_rs_sim()
Examples
par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5)
par_t <- list(a = 1, alpha = 0.5)
par_base <- list(par_s = par_s, par_t = par_t)
par_lagr <- list(v1 = 5, v2 = 10)
h1 <- matrix(c(0, 5, -5, 0), nrow = 2)
h2 <- matrix(c(0, 8, -8, 0), nrow = 2)
h <- sqrt(h1^2 + h2^2)
dists <- list(h = h, h1 = h1, h2 = h2)
set.seed(123)
X <- mcgf_sim(
N = 1000, base = "sep", lagrangian = "lagr_tri", lambda = 0.5,
par_base = par_base, par_lagr = par_lagr, dists = dists
)
plot.ts(X)