Calculate Cauchy correlation
Arguments
- x
A numeric vector, matrix, or array.
- a
Smooth parameter, \(a>0\).
- alpha
Scale parameter, \(\alpha\in(0, 1]\).
- nu
Power parameter, \(\nu>0\). Default is 1.
- nugget
The nugget effect \(\in[0, 1]\).
- is.dist
Logical; if TRUE,
x
is a distance matrix or an array of distance matrices.
Details
The Cauchy correlation function with scale parameter \(a\) and smooth parameter \(\alpha\) has the form $$C(x)=(1-\text{nugget})(a|x|^{2\alpha} + 1)^{-\nu}+\text{nugget}\cdot \delta_{x=0},$$ where \(\delta_{x=0}\) is 1 when \(x=0\) and 0 otherwise.
References
Gneiting, T., and Schlather, M. (2004). Stochastic Models That Separate Fractal Dimension and the Hurst Effect. SIAM Review, 46(2), 269–282.
See also
Other correlation functions:
cor_exp()
,
cor_fs()
,
cor_lagr_askey()
,
cor_lagr_exp()
,
cor_lagr_tri()
,
cor_sep()
,
cor_stat()
,
cor_stat_rs()
Examples
x <- matrix(c(0, 5, 5, 0), nrow = 2)
cor_cauchy(x, a = 1, alpha = 0.5)
#> [,1] [,2]
#> [1,] 1.0000000 0.1666667
#> [2,] 0.1666667 1.0000000
x <- matrix(c(0, 5, 5, 0), nrow = 2)
cor_cauchy(x, a = 1, alpha = 0.5, nugget = 0.3, is.dist = TRUE)
#> [,1] [,2]
#> [1,] 1.0000000 0.1166667
#> [2,] 0.1166667 1.0000000