Calculate exponential correlation
Arguments
- x
A numeric vector, matrix, or array.
- c
Smooth parameter, \(c>0\).
- gamma
Scale parameter, \(\gamma\in(0, 1/2]\). Default is 1/2.
- nugget
The nugget effect \(\in[0, 1]\).
- is.dist
Logical; if TRUE,
x
is a distance matrix or an array of distance matrices.
Details
The exponential correlation function with scale parameter \(c\) and smooth parameter \(\gamma\) has the form $$C(x)=(1-\text{nugget})\exp(-c|x|^{2\gamma})+\text{nugget}\cdot \delta_{x=0},$$ where \(\delta_{x=0}\) is 1 when \(x=0\) and 0 otherwise.
References
Diggle, P. J., Tawn, J. A., & Moyeed, R. A. (1998). Model-Based Geostatistics. Journal of the Royal Statistical Society. Series C (Applied Statistics), 47(3), 299–350.
See also
Other correlation functions:
cor_cauchy()
,
cor_fs()
,
cor_lagr_askey()
,
cor_lagr_exp()
,
cor_lagr_tri()
,
cor_sep()
,
cor_stat()
,
cor_stat_rs()
Examples
x <- matrix(c(0, 5, 5, 0), nrow = 2)
cor_exp(x, c = 0.01, gamma = 0.5)
#> [,1] [,2]
#> [1,] 1.0000000 0.9512294
#> [2,] 0.9512294 1.0000000
x <- matrix(c(0, 5, 5, 0), nrow = 2)
cor_exp(x, c = 0.01, gamma = 0.5, nugget = 0.3, is.dist = TRUE)
#> [,1] [,2]
#> [1,] 1.0000000 0.6658606
#> [2,] 0.6658606 1.0000000